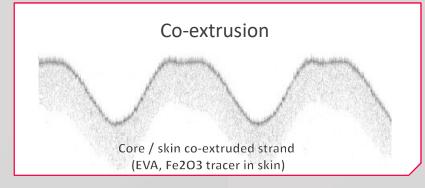
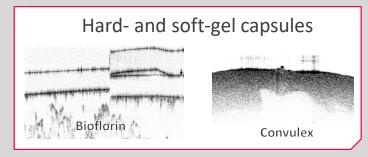
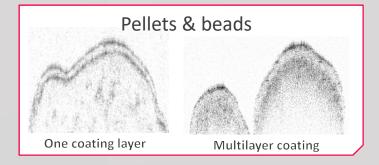

OCT Development at RCPE

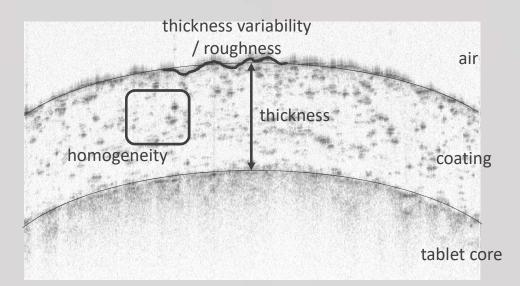

- Strategic project started in 2012
 - Adaptation of existing technology to the needs of pharmaceutical applications
 - Development of hardware for in-line and off-line analyses
 - Development of first generation of algorithms for in-line data evaluation
- Further development of prototype since 2015
 - Development of GMP compliant systems including documentation
 - Input from big pharma companies
 - Development of algorithms for real-time data evaluation, software and user interface
- Actual status
 - Patent granted
 - System ready for commercialization via Phyllon

Motivation was established procedure


- Low amount of data
- Statistically representative?
- Accuracy?
- No direct measure for thickness
- Time consuming approach
- Lack in methodologies for in-line assessment
- No signals available for active process control
- Missing information on coating homogeneity

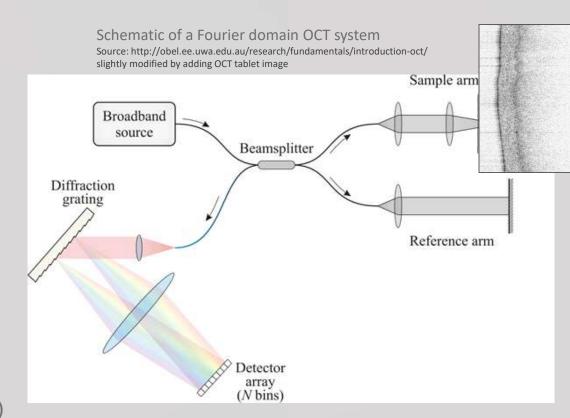
Overview of **Analysed Pharmaceuticals**





Coating Quality Characteristics of Enteric and Controlled Release Tablet Coatings

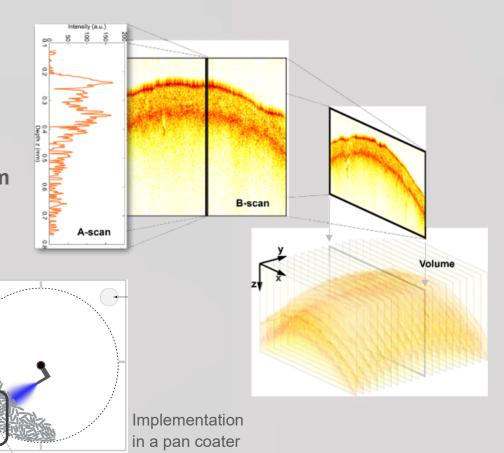
- Coating layer is of biopharmaceutical importance
- Thickness
 - Impact on dissolution time, diffusion kinetics
- Thickness variability (between and within tablet)
 - Might directly impact variability in dissolution rate
 - RSD after coating is still significant
- Surface roughness
 - Surface affects water uptake
 - Correlation to optical appearance (e.g., scuffing)
- Homogeneity
 - The structure within the coating
 - Agglomerate of excipients, air bubbles, ...
 - Potential link to dissolution variability



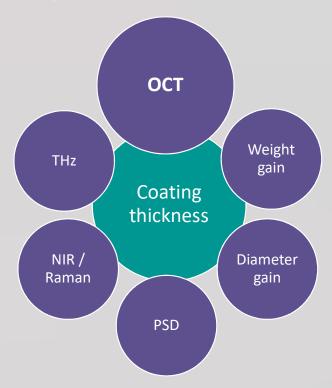
Better understanding of coating quality brings significant benefit in formulation and process development

Interferometry: The Technology behind OCT

- OCT is based on (coherence gated) interferometry
 - 75nm bandwidth at 830nm center wavelength
 - Defines the axial (=depth) resolution 5µm
- Light is split in reference and probe path
- Optics of sample arm focus light and define lateral (=surface) resolution – 14µm in focus
- Interference of light reflected back from both paths
- Spectrometer (grating, CCD line scan camera)
- Depth-information is generated from interference by Fourier-transformation (FFT)
- Depth scan measurement rate: 100kHz
- Direct thickness measurement (optical path length)



The "ABC of OCT" - Nomenclature

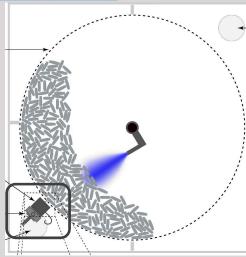

- Each interferogram → one depth reading ("A-scan", 1D)
 A-scan rate: 100kHz max.
- Multiple A-scans → cross-sectional image ("B-scan", 2D)
 Demands moving of objects or scanning sensor beam
- Multiple B-scans → full OCT volume ("C-scan", 3D)
 Raster-scanning of probe with sensor beam

OSeeT pharma 1D is based on B-scans, by moving objects relative to the OCT sensor (e.g. tablets in a pan coater)

Why **OCT**

for in-line measurement of coatings

- Direct measurement of coating thickness & quality
 - No chemometric modelling → low Total Cost of Ownership
 - No indirect monitoring of growth via D50 shift of particle size
- Statistically relevant; hundreds of samples evaluated per minute
- Wealth of information
 - Mean coating thickness over whole run
 - Coating variability between particles
 - Homogeneity and roughness of coating
- Ease of use; intuitive software requiring no special scientific training

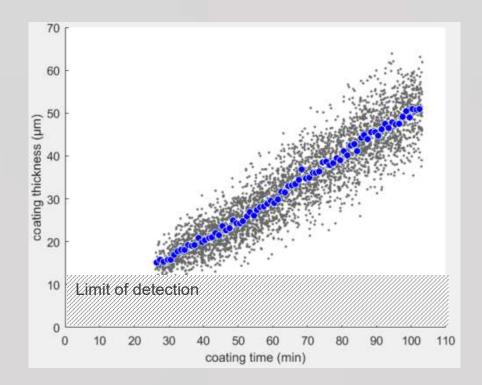

End-point control of an industrial pan coating process

Materials & Methods

- Coater: Glatt GCC 150
- Materials
 - Placebo oval shaped cores: 11.6 x 6.1 x 4.6 mm
 - 50kg batch
 - Coating: Kollicoat IR, PVA-PEG copolymer, 15% aqueous solution
- Common reference methods
 - Weight gain of 100 tablets, corrected for residual moisture via LoD
 - Sprayed coating solution
- OCT based end-point detection at 50µm; manual stop of coating
- Aim for Glatt: Test data quality and in-line capability of OCT

Performed Experiments and Results

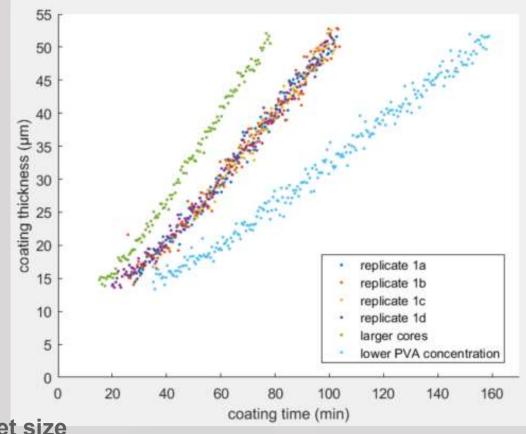
- Run 1a-d: Replicates with identical process parameters
- Run 2: Higher spray gun to bed distance
 - Lead to spray drying
 → higher total amount sprayed (kg)
 - Same weight gain, also for lower efficiency
- Run 3: Larger cores
 - Core dimensions: 18.5 x 9 x 6.5 mm
 - Less total surface area
 → lower total amount sprayed (kg)
 - Higher area per tablet→ higher weight gain (mg)
- Run 4: Lower PVA concentration
 - 10% instead of 15% in aqueous solution


	Run 1a	Run 1b	Run 1c	Run 1d	Run 2	Run3
Tablet core [mg]	256.6	256.6	256.6	256.6	256.6	782.0
Gun to bed distance [mm]		2	00		300	200
Total spray amount [kg]	13.9	14.6	13.9	14.3	15.7	11.4
Weight gain [mg]	10.9	11.0	10.9	11.4	11.4	28.2
Weight gain [%]	4.2	4.3	4.2	4.4	4.4	3.6
Film thickness [µm]			5	0		
Efficiency, moisture corrected	98%	96%	98%	97%	91%	98%

OCT Coating Trajectory of Run 1a

End-Point Results					
Mean Thickness:	50.67 μm	Mean Roughness:	4.82 µm (± 20.94 %)		
Target Thickness:	150 µm	Mean Homogeneity:	48.43 % (± 18.55 %)		
Batch Variation:	±5.66 μm	# Datapoints:	3467		
Relative Batch Variation:	±11.18 %	Elapsed Coating Time:	01:17:12		
End-Point Time Frame:	00:01:00				

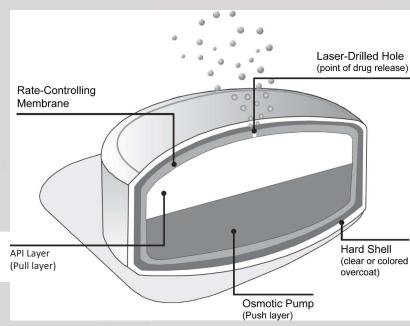
- Dark gray: Each point is a single tablet
- Blue: Mean of all tablets within 60 seconds
- Statistics for end-point are calculated on an adjustable time frame of 60 seconds
- Observed variation (RSD of ~11%) for single tablets at the coating end-point is common



Comparison of Coating Runs

- Replicate 1a-d:
 - Very good repeatability→ stable coating process
- Run 3: Larger cores
 - Less total surface area
 - → faster coating process
- Run 4: Lower PVA concentration
 - 10% instead of 15% in aqueous solution
 - → 50% longer coating time

 Reliable end-point detection via OCT, despite variations in efficiency, concentration or tablet size



OCT based surrogate model for dissolution

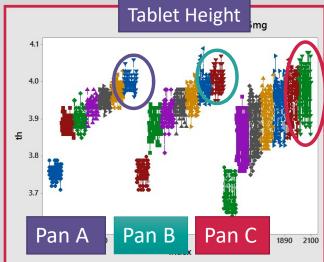
Osmotic Push/Pull Tablets (OROS) for Controlled Release

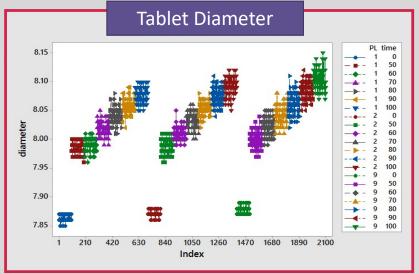
- First order release
 - Constant release rate over extended periods (>10 hours)
- Semi-permeable membrane
 - Permeable to water, but impermeable to drug solution
 - Commonly cellulose acetate (good water permeability)
 - Adjustable permeability by e.g. plasticizers
- Swell-able polymer as push layer
- Drug solution will be pushed through orifice
- Aim of the study:
 Understand impact of coating on drug release rate to develop surrogate model for dissolution

Slightly modified from source: Providing Constant Analgesia with OROS Hydromorphone, S. Gupta, S. Gayatri, Journal of Pain and Symptom Management, vol. 33 (2), 19-24, 2007

Materials & Methods Coating Process of OROS Tablets

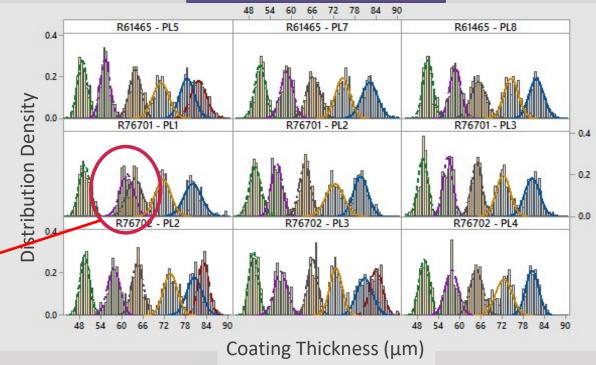
- 4 semi-perforated pan coaters (Freund-Vector)
 - Solvent coating
 - Differences in design and spray gun configuration
 - Lead to different efficiencies and OCT coating quality parameters
- Sampling
 - Drawn at t = 0, 50, 60, 70, 80, 90, 100, 104% coating progress
 - Sample size per time point: 300 tablets
- At-line OCT to measure samples
- Dissolution test over 16 hours


At-line sampling device with integrated OCT probe


Classical Methods to Measure Coating Progress

- Classical methods:
 - Weight-, height- and diameter-gain
 - Observed variation is due to coating AND method
- Large variations in dissolved API despite similar readings

						Tab	let '	We	igh	t		
2	200											
1	195 -			.1.3				11	Į.		1.1	i
1	190 -			neth;	C P		#t			*	11	
wt 1	185 -	3	2					V	, A			f.t
	180 -						1			1		
						37	•		1			
1	175 -	1.										
									354			
1	170 -	F			3	R						
		**				30			2.2			
			210	420	630	840	1050	1260	1470	1680	1890	2100

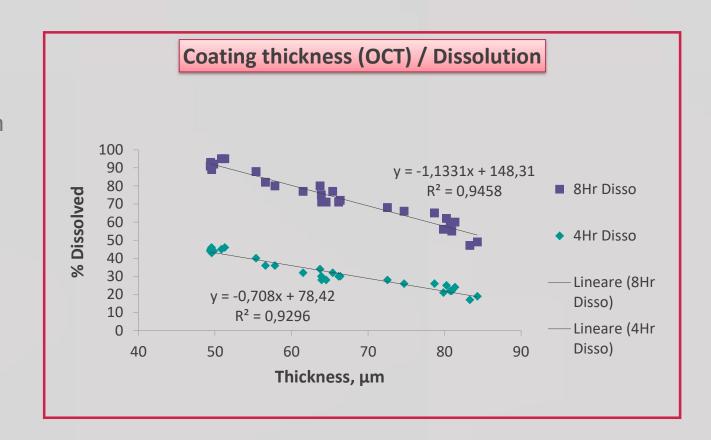


OCT to Measure Coating Thickness

- OCT measures coating thickness distribution for each sample
- Gaussian like distribution
- Human error in timing of sample drawing was detected

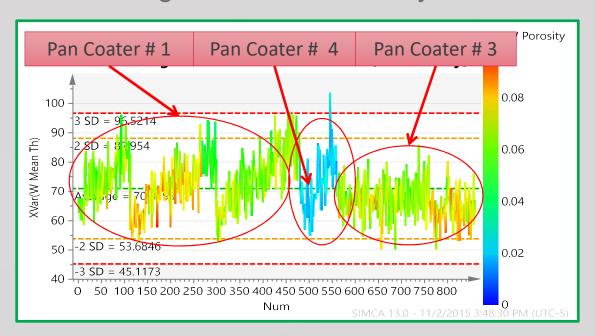
Samples	Thickness (μm)	4 Hr Disso (API %)	8 Hr Disso (API %)
PL7-60%	51.28	46	96
PL7-80%	66.35	30	73
PL1-60%	49.54	46	91
PL1-70%	61.51	32	77
PL1-80%	63.72	33	79

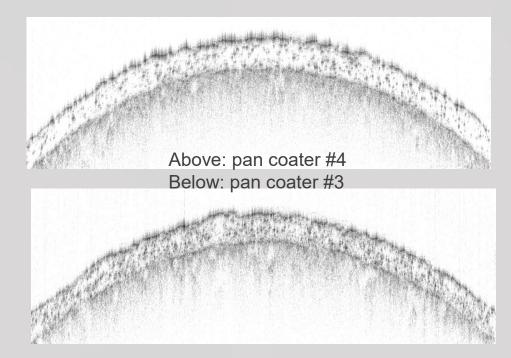
OCT Coating Thickness (µm)



Correlation of OCT Data to Dissolution

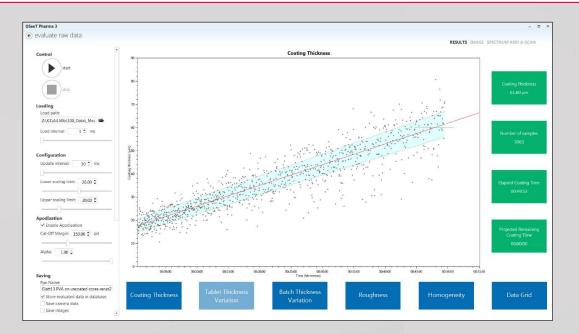
- Linear relation between OCT measured coating thickness and dissolution rate observed
- OCT shows better correlation than current weight gain method

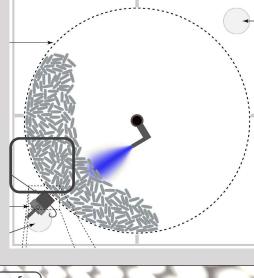

	OCT –R²	WT Gain-R ²
4 Hrs Disso	0.93	0.86
8 Hrs Disso	0.95	0.90



Not Only Coating Thickness Matters

- Tablets of pan coater #4 showed higher coating homogeneity
- OCT images show that visually


Wrap-Up



Wrap-Up

In-line Monitoring of a Pan Coating Process

Process development: fast coating quality and thickness analysis during DoE studies **Scale-up**: compare coating quality (e.g. scuffing) and thickness between scales **Manufacturing**: end-point independent of spray efficiency or process variations

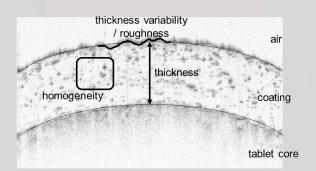
OSeeT pharma 1D: Industrial Ready OCT System

In-line configuration

- Hygienic design, rugged, air purging
- ATEX, IP66 certification
- Real-time monitoring of coating process

At-line configuration

- Sampling device (miniature drum) for mixing of sample
- Fast analysis of representative number of tablets,
 at-line in manufacturing area
- A strong collaboration
 - RCPE holds patent is developing technology
 - Phyllon is manufacturer and distributor



Wrap-Up

OCT for Pharmaceutical Films and Coatings

- OCT is a calibration free method
 - No chemometric modelling needed only refractive index
- Mean coating thickness over whole run
- Inter- and intra-particle coating variability
- Coating quality: homogeneity and roughness

OCT brings the quality and confidence

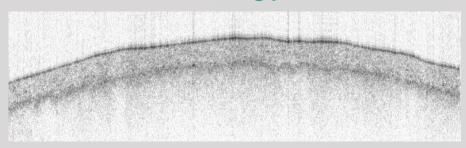
of labor intensive and manual methods (e.g. diameter or weight gain)

to a real-time in-line method with additional insights in coating quality

Wrap-Up

Reference Target for OQ

- Verify accuracy and linearity (operational qualification) by sliding probe over reference target
- Software support via reference wizard
- Foils with defined thicknesses
 - 19, 36, 50, 75, 100, 125, 190 μm
- Foils characterised via
 - OCT
 - THz
 - µCT
 - Caliper
- Paper on reference target in preparation



Feasibility Study

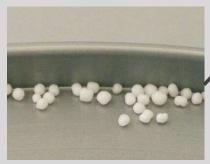
Differentiating Coating Quality with OCT

Good coating process

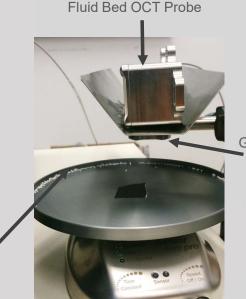
- Lower scattering in coating indicating a uniform coating layer
- Coating-Core interface clearly visible

Sub-optimal process

- Highly scattering coating layer likely caused by incomplete film forming or poorly dispersed talc
- Less ballistic photons reach coating-core interface, resulting in poorer contrast
- EUDRAGIT® L30 D-55 does not show curing
- Thus, process conditions for coating must be well chosen
- Coating quality differences can be determined with OCT



Monitoring of a Fluid Bed Coating Process


- Emulation of a Wurster coater fluid bed process
- Up to 250rpm = ~2m/s circumferential speed
- Pellets: Cellets 1000, 40µm coating
- Probe can measure through glass of fluid bed coater
- From 1 mm to 25 mm thickness
- Tests in industrial Wurster coaters lab and production scale (MiniGlatt and Glatt GPCG30 with 18" tube)

Pellets with a velocity of ~2m/s (typical for Wurster coaters)

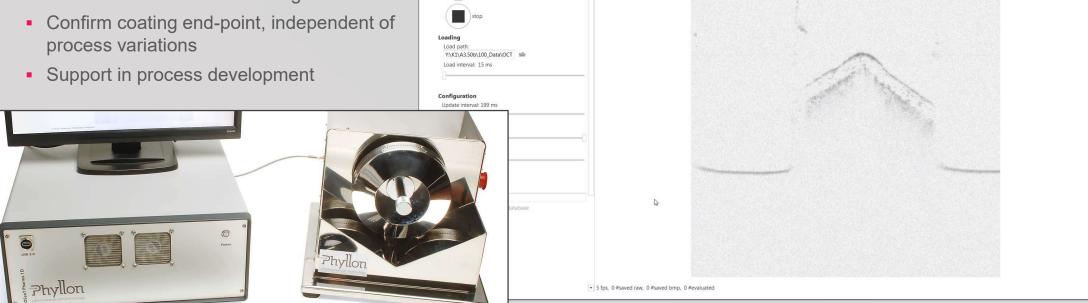
Pellets on rotating disc

Glass window (hidden)

Suggested OCT probe location

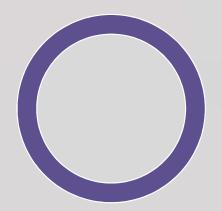
Example image of Wurster coater

PREDICTION IMAGE SPECTRUM AND A-SCAN

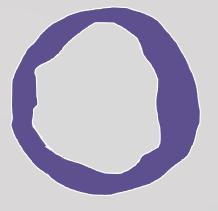

Logged in as: OCT

At-line Sampling Device for In-Process Control

evaluate raw data


OSeeT Pharma

- Miniaturised drum-set up tailored to mimic large scale pan coater
- Fast analysis of representative number of tablets at-line in manufacturing area

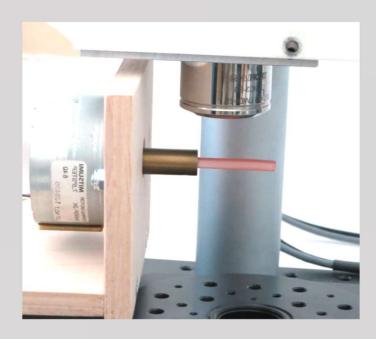


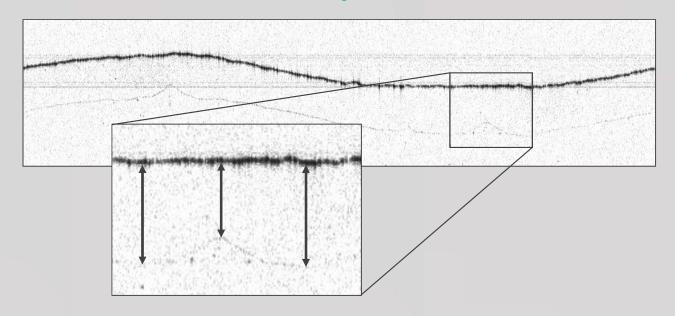
Co-extrusion of Core-Skin Reservoir System

Desired ("the good") co-extruded strand

- Spherical core and skin
- Identical center point
- Resulting in homogenous skin thickness

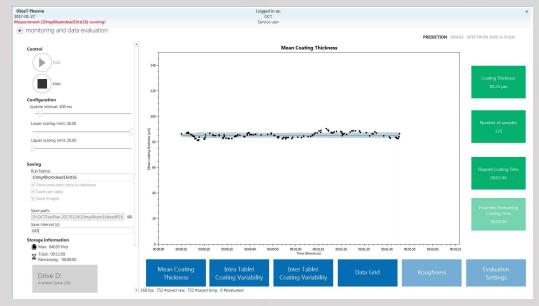
Real ("the ugly") co-extruded strand


- Rough core and/or skin
- Variations in skin thickness


Co-extrusion product: NuvaRing for birth control

Co-extrusion of Core-Skin Reservoir System

- Rotation of strand with stepper motor
- Map of circumference with 3D OCT head



- Skin of co-extrusion product over entire circumference
- Skins thickness variations can be seen
- Two thin regions: Melt fronts merge
- OCT to support co-extrusion process development

OCT System Commercialisation

- Strategic project started in 2012
 - Hardware for in-line and off-line analyses
 - 1st gen. algorithms for in-line data evaluation
- Further development of prototype since 2015
 - Algorithms and UI for real-time data evaluation
 - Collaboration with large industry partners for near-line sampling
 - GMP, CE and ATEX compliant equipment
 - Patent granted for in-line pharmaceutical applications
 - Technology commercialised via licensing agreement with Phyllon GmbH

OCT Software for in-line / at-line analysis

OCT 1D GMP Pan Coater Probe